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Small-angle X-ray scattering technique can be used to quantify the microvoids structure within a 
particulate reinforced composite. An expression for the correlation function of three-phase systems has 
been derived in terms of the correlation function of the individual phases. By using this expression and 
the scattered intensities from the damaged and the undamaged composites; it has been show that the 
volume fraction and the chord length of the microvoids can be obtained, provided no damage occurs to 
the reinforcement particles. In cases where the microvoids are preferentially oriented within the 
composites, an approximation scheme based on a linear transformation method has also been developed 
to measure the aspect ratio of the microvoids provided the volume fraction of these microvoids is much 
smaller than the other two phases. 
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INTRODUCTION 

Small-angle scattering techniques, e.g. X-ray, neutron, 
light, etc., have been used extensively in characterizing the 
structure of various heterogeneous systems. Most 
theoretical schemes developed so far have been intended 
• ~r elucidating certain structure parameters in two-phase 
systems only. These schemes, for example, are Porod plot 
for specific interface area 1, chord length determination by 
integration of the scattered intensity 2 and a Guinier plot 
for the radius of gyration in dilute systems 2. 

Theoretical developments in multiphase systems have 
been reported; e.g., an expression of the correlation 
function of three-phase systems was given by Peterlin ~ 
who introduced an interaction term 7~ 2(r) specifying the 
relative position between components 1 and 2. A cor- 
relation function of a specific three-phase case, labelled 
macromolecules in addition to unlabelled chains in a 
solvent, was also reported recently 4`s. It will be shown 
later in this paper that the final result derived in refs 4 and 
5 can easily be obtained using the general expression of a 
three-phase correlation function reported in the following 
section. An expression of correlation function of multiple 
phase systems has also been reported ~'. This expression, 
however, is valid only at the large scattering angles, 
provided all the interface area S u between phases i and.j is 
given. 

] 'he purpose of the present work is to provide a 
theoretical basis for treating the small-angle X-ray 
scattering (SAXS) data from a particulate reinforced 
composite containing microcracks. The equations de- 
rived herein will enable us to calculate certain structural 
parameters of the microcracks provided the scattered 
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intensities l(h) and lo(h) of both the damaged composite 
and the undamaged one are given. Here h has its normal 
definition as (4rc/)j sin 0, where ), is the wavelength and 0 
the scattering angle. 

THEORY 

C orre lat ion .limct ion 
The general definition of correlation function ;,(r) is 

given as 

_, I f  
q-7(r)= 1) ~/(x+r)~l(x)d3x (1) 

where q(x)is the deviation of electron density tit a position 
x from the average value within the scattering volume V, 
and ~l-' is the average of the square of the deviation and is 
called the scattering power. The scattered intensity l(h) is 
simply the Fourier transform ofqZT(r). It has been shown 2 
that, in a two-phase system, the conditional probability 
Z(r) is related to the correlation function 7(r) by a simple 
relation: 

Z(r)= ~#l +(1 - ~pl ),,(r). (2) 

]his  equation is valid as long as no long range order 
existed within the system under consideration where q~ is 
the volume fraction of phase 1. The function Z(r) repre- 
sents the probability that a point in the volume at a 
distance r from a point located in phase 1 is itself also 
located in phase 1. Another function Z'(rl, representing 
the probability that a point at a distance r from a point 
located outside phase 1 is also outside phase 1, has an 
expression: 

Z ' ( r )= ( l  -~p:)+~l ; , ( r ) .  (3) 
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It is the purpose of this work to derive an expression for 
the correlation function of a three-phase system in terms 
of the correlation function of each constituent phase. For 
example, 71(r) is the correlation function of phase 1 as if 
phases 2 and 3 compose a single phase and so on. 
Following equation 2 the expressions of Z ,  can be written 
as ;  

Zii(r) = (Pi + (1 - qg i )T i ( r  ) 

i=1 ,2 ,3  (4) 

In order to carry out the integration in equation 1 to 
derive the correlation function of a three-phase system, 
expressions for Zis(r ) (i~j) in terms of 7i(r) are needed. 
These relations can be obtained from a simple pro- 
babilistic consideration as follows: 

( P 2 Z 2 3 ( r )  = ( P 3 Z 3 2 ( r )  - -  

(5) 
((P2 + (P3)Z' x 1 (r) - -  (P2Z2 2(r) --  q9 3Z3 3 (r) 

where ( P 2 Z 2 3 ( r )  stands for the probability that a point at 
distance r away from a randomly chosen point is inside 
phase 3 and the starting point happens to be in phase 2. 
This probability q ) 2 Z z 3 ( r )  of (P3Z32(r)  is equal to that of 
the following condition: both the starting and the ending 
points of r are not within phase 1, and the condition that 
both ends located in either phase 2 or 3 is not allowed. The 
probability of the condition described above is expressed 
on the right side of equation 5. With the same argument, 
Z12(r ), Z21(r), Z31(r ) and Zla(r)can also be expressed in 
terms of 71(r), ),2(r) and 73(r). 

The integration of equation 1 can be written as: 

~2 ~'(r) ---~ Z?]i?Ij~oiZij(r ) (6) 

where ql = P i -  P, P = ZPM~ and p~ is the electron density of 
phase i. 

By substituting equations 2 and 5 into the summation 
of equation 6, the correlation function can be expressed as: 

qZY(r) =(Pz -- Pl)(P3 -- Pl)gOl( 1 -- (Pl)TI(r) 

"+- (P3 -- Pe)(Pl -- PZ)q~2( 1 -- q32)Tz(r) 

+ (Pl -- P3)(P2 -- P3)q~a( 1 -- q~3)73(r) (7) 

The symmetry in the above expression is highly desir- 
able, and it is trivial to show that the expression of 
equation 7 can be reduced to the appropriate one of two- 
phase systems by letting Pl ~--P2 or (D1 =0 ,  etc. 

Since the correlation of a three-phase system can be 
expressed as a summation of that of individual phases, the 
correlation function ~,,~(r) represents that of a traditional 
two-phase system. These schemes evaluating chord length, 
scattering power, specific interface area, etc., in a 
two-phase system are now expected to be applicable in a 
three-phase system with certain modifications. 

In the following sections, equation 7 will be used as a 
theoretical basis to deduce certain structure information 
of the microvoids within a particulate composite given the 
scattered intensities l(h) and lo(h) of the damaged com- 
posite and the undamaged one, respectively. Finally, the 
equation relating the scattered intensity to the confor- 
mation of long chain molecules within a specific three- 

phase system will be deduced from equation 7 as a special 
case. 

Application of equation 7 in SAXS of particulate 
composites--an isotropic case 

In this section a composite material with fine quartz 
particles as fillers will be the subject of discussion. Inside 
the damaged region, the matrix phase contains mic- 
rovoids presumably caused by leaching out some unre- 
acted monomer molecules while the shape and relative 
position of the fillers remain unchanged. The scattered 
intensities for both the damaged and undamaged zones 
were isotropic, i.e., independent of the azimuthal angle ~. 

The scattered intensity l(h) for the damaged composite 
in which fillers, matrix and microvoids constitute the three 
phases is simply a Fourier transform of equation 7 shown 
as follows: 

l(h)=(P2 - P,)(P3 - Pl)(Pl ( 1 - (Pl)F?I(r) 

+ (P3 - Pz)(Pl - P2)tP2( 1 - ~°2)F72(r) 

-~-(Pl  - -  P 3 ) ( P 2  - -  P3)(]93( 1 - -  q~3)F73(r) (8) 

where F denotes Fourier transform defined as 

f (sin hr/hr) 4rw2dr for isotropic cases, and henceforth the 

subscripts 1,2, 3 denote the filler, matrix, and microvoids, 
respectively. For the undamaged portion of the com- 
posite, the scattered intensity can be expressed as: 

lo(h)=(p2 - pl)Zcp°(1 - q~l °)F},~ °(r) = 

, 2  0(1 (P2-Pl) (D2 -q~z°)F)'z°(r) • 

Given the fillers do not change their shape and relative 
position from one another, one has the relation: 

71°(r)=';l(r) and ~01°=~ol. (10) 

It is noteworthy that 72°(r)=fiY2(r) because now the 
microvoids add a third phase inside the matrix which is 
phase 2. 

The volume fraction ~03, of the microvoids can be 
calculated from the values of l(h) and lo(h ) using the well 
known equation 2 relating the scattering intensity to the 
scattering power t/2: 

f h2lo(h)dh=2~2l~(h) V(p I -p2)2~oi(1 -¢,01). (11) 

0 

From equation 7 it is trivial to show that: 

i h21(h)dh =2rt2l,,(h)V[(pl )2 - P 2  ¢P 1(P2 + (P2 - p3)2(P2 (P3 

0 

+ ( P 3  - -  P l )Zq~3~Ol]  
(12) 

where l(h) is the scattered intensity of a single electron. 
Equations 11 and 12 can be combined to yield an 
alternative form: 
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(P, -P~)~‘P, 

+t(p, -&I292 -(P, -P2J2% 

1 
(P3 

The value of vi can be obtained from equation 11 and the 
value of ‘pz or (pJ can be calculated from equation 12 or 12’ 
with the additional relation ‘p, + qr + (p3 = I. 

(12’) 

The above discussion clearly demonstrates that the 
value of (p3 can be obtained from 1(/t) and 1,(/r) only if 
certain relations such as those given by equation 10 can be 
assumed. In the high angle region in which Porod’s law is 
applicable’, the scattering intensity can be approximated 
by the following equation: 

where Sij is the total interface area between phases i and,j 
within the scattering volume I/: The above expression 
approximating the scattered intensity can easily be de- 
rived from equation 7 with the knowledge that2: 

-1 S,,+S,, 

r=Cj 4q,(l -cp1) v 
(14) 

Because no u priori relation among Sij exists contrary to 
one such relation Cq, = 1 for the volume fraction cpi, more 
assumptions will be needed to obtain the value for the 
individual term S,, from equation 13. Even if one can 
assume with reasonable confidence that the filler particles 
do not change their shape and relative position from each 
other, no apparent relation can be assumed between S, 2°. 
the interface area of the undamaged region, and S, of the 
damaged one. Therefore, Porod’s scheme will be useful in 
estimating interface area of the third phase only if certain 
assumptions or pre-existent information is available, e.g., 
all the void occurs inside the matrix, hence S, z = S, ?’ and 
s,,=o. 

The quantity chord length’ provides an important 
insight of the average linear dimension of each phase in a 
two-phase system. This quantity can be measured expe- 
rimentally by performing the following integration of the 
experimentally measured data 1(/r): 

The correlation length of T of a two-phase system 
follows the relation: 

(16) 

0 

and the chord length is related to the correlation length 
by: 

i, = f i2 = 
T 

Y’ ’ ‘PI 
(17) 

For a three phase system, the values of chord lengths 

! 
. 

can be related to the integral /I I( h)d h by: 

0 
I * 

1’ 
h1(h)dh=4nl~,(h)I/ (P~-I’~)(/‘~-I)~)(P~(~-CP~) 

l 
yl(r)dr 

0 0 

+(p3 -p2)(p1 -p2)y2(1 -cp2) I ;‘2Wr 

1 

+(P, -P~~~~-P~M~(~ -cp3) ;.3(r)dr (18) 

i 1 
,I 

and the chord length Ii for each of the three phases can be 
obtained from the relation similar to equation 17: 

(19) 

With the values of /I, and cp, given and the value of the 

integral 
/ 

/I I(/r)dh determined experimentally, equation 

1X will give us the value of certain linear summations 

of < instead of the value of each <. By letting the chord 
length i, (the fillers) stay unchanged, one (I priori re- 
lationship between i, and r, is needed before one can 
d&ermine their values. A simple relation given by equa- 
tion 17 relating the chord length and the volume fraction 
of each phase. i.e., i,iyi =u(pz, is invalid for systems 
composed of more than two phases. The value of i3 can be 
obtained from equation 1X if, and only if, one more u priori 
information regarding i2 is available. However, in case the 
value of (p3 is extremely small compared with those of ‘pi 
and ‘pz. one can approximate the following equalities: 
i, = T and i, = q. By using such assumptions, equations 18 
and 15 can be combined and rewritten as: 

r k(l(k) - I,(k))dk 

~4d,(k)~p, -p3)(p2 -P~)(P~(~ -y3) ;‘&W 
0 

=2nl,(h)Up, -PJ(Pz -P&3(1 -cpJl, 

(20) 

Therefore, equation 20 provides the approximating 
scheme measuring the chord length of isotropic mic- 
rovoids if their volume concentration is much less than 
those of either phases 1 or 2. 

Eslinzuf iorz of’ c,kortl lrnql k in uwisotropic~ c’use 

Within the specimens damaged by external force with 
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preferentially orientation, the resultant microcracks are 
also oriented to certain stress direction. Consequently, the 
quantity l(h) - lo(h ) not only depends on the magnitude of 
scattering angle 0 but also on the azimuthal angle/~. In 
such cases, the volume fraction of the microvoids or 
microcracks can be determined again using equation 12 
except that the integral ~h2( l (h) - lo(h) )dh  will be replaced 
by ~( l (h ) - l o (h ) )dV  h (ref 1) for calculating the so-called 
scattering invariant. Hence, no theoretical difficulty exists 
for the measurement of the volume concentration of the 
microvoids in such a composite specimen. 

As for the chord length estimation, equation 20 can no 
longer be used since the whole scheme in deriving 
equation 15, the precursor of equation 20, is based on the 
Fourier inversion scheme for an isotropic case. In the 
following section, a theoretical scheme will be developed 
for measuring the chord length of microvoids along 
certain directions. 

Since the quantity l(h)-10(h) is anisotropic or azim- 
uthal angle dependent, the corresponding correlation 
function 73(r) must be dependent on the direction or r 
specified by the azimuthal angles ~p and 0. For the 
purpose of clarity, the subscription of?' 3 will be dropped in 
the rest of this section. 

To a first degree of approximation, 7(r) can be transfor- 
med into an isotropic one 7(r') by the following relation 
between coordinate r and r' 

r = IZejlr' (21) 

where Gjl is a 3 x 3 symmetrical matrix, 
The scattered intensity difference l ' (h)= l ( h ) -  l(h) with 

the vector h in 0 and /~ space can be expressed as: 

/. 
l'(h) = l,,(h) V(pl - P3)(P2 --/33)(,03( 1 - -  ~°3)/7(r)e i"'d 3r. 

d 

(20') 

Hereafter, the term in front of the integral of equation 20' 
will be replaced by a constant A. In the r' coordinate, 7(r') 
is isotropic, i.e., the value of 7(r') depends only on the 
magnitude oft ' ,  the resultant scattered intensity expressed 
in a new h' space must be isotropic also. 

]'he coordinate h' is simply defined by the relation: 

h"r' =h'r (22) 

For a transformation given by equation 21, the value of 
the correlation function remains constant. 

7(r) = 7(r') (23) 

This can be visualized easily from the geometric 
representation of the meaning of ?(r) given in ref. 2. The 
relation expressed by equation 23 is believed to be an 
essential one in dealing with problems of anisotropic 
scattering objects. 

By substituting equations 22 and 23 into equation 20' 
one has 

l ' (h ')= ih r d 3 r '  

(" , sinh'.r' 
= A) ,,(r ) h;.," 4m"Zdr'. 

(24) 

The chord length expressed in r' can then be obtained 
through the integral ~h'l'(h')dh', and the chord length in 
real space r can be calculated later from an inverse 
transformation of 12J. 

By knowing the deformation history of a specimen, it is 
possible to position the specimen in such an orientation 
with respect to the incident X-ray beam that one of the 
principal strain axes coincides with the X-ray beam 
direction. Hereafter, only the matrix 12J=2o.~ with 
2~2223 = 1 will be treated without losing much generality, 
where 6/j is the Kroneker delta. 

Given the incident beam is in the X~ direction, the 
scattering angles d. and 7 of the transformed vector h'(~,7) 
defined in equation 22 will bC: 

sin ~ = sm/~ + C 

sin y = )-2 sin # [ ( 2 2  sin p)2 + (Z 3 cos #)2] - 

(25) 

(26) 

1[[-//22. "~2 2 2 - c o s 0 ) )  C = 5 ~ L ~ r s i n , )  + ( ~ : - c o s p ) } ( l + c o s O , + , l  
/ 

(27) 

and h'(~,7) = (1 - cos ~)i - (sin ~ sin 7)J - (sin ~ cos 7)k. (28) 

In the transformed coordinate, the term fix' of equation 
24 can be expressed as: 

h'-r' = C21r[sin 0 cos ~0(1 - cos ~) - sin 0 sin q~ sin ~ sin 7 

- cos ~ sin ~ cos 7] (29) 

From the above equation it is obvious that a new vector 
q is needed, the magnitude ofq is C2~r and the direction of 
q is the same as r'. The corresponding value of the 
correlation function 2(q) still equals that of 7(r); further- 
more, 7(q) is also spherically symmetric. Equation 24 can 
then be expressed as: 

I 
..... 4~zA [' ,' ,sin h'q 2. 
~n ) = , ~  T3 | ) I q ~ ; ~ q  aq (30) 

Following the rationale in deriving equations 15 and 16, 
the correlation length expression in q space is simply: 

(31) 

The value of the correlation length in r' space can be 
obtained by the simple relation T(r') = l(q)/C21 . Finally, the 
values of l(r) can be derived from the values of l(r') and 2 i. 

In performing the integration of the right side term of 
equation 31 along the meridian and the equator, one 
denotes the resultant value of ~I'(h)hdh as E(p=0) and 
E(/~ = =/2), respectively. Along the meridian (/~ = 0) one has 
C~-(23/).1) 2 and h'~-().1/23)h by letting c o s 0 ~  1 in equa- 
tions 25- 27. For the angular range encountered in SAXS, 
this approximation is considered to be justifiable. 
Similarly, along the equator, i.e., /~=7r/2, one has 
C~(22/21 )2 and h'=(21/),2)h also from equations 25 27. 

Along the meridian of the scattering pattern while the 
incident beam S o is parallel to X 1 axis, equation 31 can be 
converted into: 

1910 POLYMER, 1982, Vol 23, December 



. . . .  ' -  13l'  
AlJ 2rrA\2,/l 3 

Furthermore, in the transformation from h to h', the term 
l'(h) remains the same as l'(tf). Equation 31 can be 
simplified further as: 

27rA 7-(r')= 2 ~ | h  l'(h)dh - -A  3 -  ~3 E([I~_O, So =Xl) (32A)  
d 

By similar derivation, the following relations hold: 

2rrA ]-(r')- - " 2  "3E(tL=1r/2, So=X1) (32B) 

3 E(I~ = ~/2, S O = X , )  (32C)  27rA/( r ' )  = / . ,  

,3 E(/~ = 0 .  S ° = X 2 )  (32D) 2rrA/(r') = z 3 

It is obvious that the right hand sides of equations 32A 
and 32D are identical, i.e., E(/~=0, S0=X1)=E(/~=0, 
So=X2), therefore, no contradiction is present in the 
derivations obtaining equations 32A D. 

In the remaining part of this section, these four 
quantities, ,:.~, )-2, ;-3 and [(r') will be expressed explicitly in 
terms of E~, E 2 and E 3. Hereafter the quantity E~ stands 

f°r theterm E@ =rr ) 2' S° =X2 which is in turn the integral 

f h  l'(h)dh along an axis parallel to the axis X of the real 1 

space r. These quantities E= and Ea_are similarly defined. 
The resultant relations for ).~ and l(r') are: 

")~1--(E2E3)I  ~' (E3E1)I'(~ IE F i 1~' 
( E l ) I . 3  ";02= (E2) , .3  , ;'3 = '  ]1r..~1'3 (33) it:3) - 

2 ~ A  [(r')={E 1 E 2 E 3 )  1 3 (34) 

The correlation length ((r) in the real space along the 
principal axis X i is simply 2i/(r') or explicitly: 

1 
[l(r) = 2rrA (E2E3)1'2 (35A) 

1 
/2(r) = 27zA (E3E1) 1'2 (35B) 

! 
/3(r)= 2rcA (EIE2)12 (35C) 

where A represents l(h)V(p 1 --P3)(P2- P3)q03( l --q)3)for 
the composite problems treated herein. The above de- 
rivations obtaining 35A C is equally applicable for a two- 
phase system problem, and the quantity A represents 
l~(h)V(Pl -Pz)2(pl (1 - (Pl) for such cases. 

Application of three-phase correlation function (equation 7) 
to a special case 

A theoretical work for determining a single chain 
scattering factor from polymer solutions has been re- 
ported 4'S. The purpose of the work presented in this 
section is to demonstrate that an identical result can be 
obtained simply as a special form of the correlation 
function expressed in equation 7 for three-phase systems. 

SAXS of particulate reinforced composites. W. Wu 

The system under consideration is a polymer solution 
with both hydrogenated and deuterated polymer mo- 
lecules dissolved, furthermore, these molecules are all of 
the same length or molecular weight. The correlation 
function of such a system is: 

~12 ;'(r) = ( p .  - Px)(P/> - Ps)q)~ (1 - q~.dTs(r) 

+ (PD -- PH)(Ps -- P, )~P, ( 1 -- q), )T,(r) 

+ (P .  - P .  XP~ - PDq)l~ (1 - q).); 'o(r) (36) 

where the subscripts S, H and D denote solvent, hy- 
drogenated and deuterated species composed of the three 
phases discussed herein. The scattered intensity of such a 
system is simply a Fourier tranform of equation 36, i.e.. 
F q2 7(r); hereafter, the Fourier transform of each term of 
the right hand side of equation 36 will be discussed 
separately. 

For the hydrogenated polymer chains, the Fourier 
transform can be written in the well known Zernicke 
Prins 2 form: 

Fqhdl - qo,)Tu(r) 

r,  21h I s i n h , "  . -] 
I/)1 ru .) - P,(r, ti,) i i t  

(37) 

where A is the scattering constant as defined before; V n is 
the molar volume of an individual chain (hence q),/V, 
equals to the number of hydrogenated chain per unit 
volume). FZ(h)is the mean value of the square of the single 
chain form factor in h space, F(,(h) 2 is the square of the 
mean value of F,(h) which is different from F~t(h) in 
general cases, c, is the specific volume occupied by each 
hydrogenated chain (hence 1/cu represents the number of 
hydrogenated chains per unit volume): PH(r,rp) is the pair 
correlation function of the centres of mass of the 
hydrogenated chains. The essential point in the derivation 
given by refs. 4 and 5 is that the pair correlation function 
P,(r,cr) is a function of the total polymer concentration 
1/cp instead of the concentration of either H or D species. 

The rationale for this essential point can be found 
elsewhere 4`s. The pair correlation function Pdr,vp) for the 
D species is then equal to that of the H polymer, and the 
subscript will be dropped hereafter. Since the single chain 
form factors of both species are identical because the 
molecular weight and the confprmtation of these two 
species are the same, the subscript in these factors will also 
be dropped. Therefore, equation 37 can be written as: 

F~oH(I -- ~o. )7.0") 

dr] 
v. L 

(Ott ~2 ~9 H 2 
(38) 

where X(h) denotes the interaction term among polymer 
chains and the same quantity X(h) is also applicable in D 
polymer scattering. The Fourier transform for the second 
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term in the right side of equation 36 is: 

FcPo(1-cpo)7o(r)=A ~oF (h ) -  ~ X(h) . (39) 

From the well known Babinet principle, the Fourier 
transform of the solvent term in equation 36 is: 

where ¢PP is the volume concentration of the total polymer 
chains and is equal to the sum ofcpn and ¢PD; Vp is the molar 
volume of polymers and equals to both VH and Vo. 

By substituting equations 38-40 into the Fourier 
transform of equation 36, one has: 

l(h)= A[(pn ~ x2(PH -'~ ~ - -  2q~O - . s~  ~pp wo ps) Vp] F (h) 

[ + A (p, - p s ) ~  + (po - ps) 
p p ~  

(41) 

Equation 41 has the same form as given in refs. 4 and 5, 
but a quite different approach is used. It is noteworthy 
that the term l(h) is a function of the total polymer 
concentration in solution. Therefore, the values of both 
FZ(h) and X(h) can be reduced from two scattering 
experiments by keeping the total polymer content con- 
stant and varying the H to D ratio. 

CONCLUSION 

A general expression of the correlation function for three- 
phase systems is derived (equation 7). Applications of this 
expression were presented for the case of damaged 
particulate composites. Formulas were derived for 
measuring the volume concentration (equation 12') and 
the average chord length (equation 20) of the microvoids 
based on the values of l(h) and lo(h ) which are the 
scattered intensities from the damaged and the un- 
damaged portions of the composite, respectively. 
Furthermore, for composites with minor amounts of 
microcracks which were preferentially oriented, equations 
were derived to measure the correlation length along each 
principal axis (equations 35A-35C). These equations are 
also applicable to measure the correlation length in two- 
phase systems with preferential orientation. 

One more example to demonstrate the application of 
the general expression of the correlation function for 
three-phase systems was presented for polymer solutions 
containing both deuterated and hydrogenated chains of 
same molecular weight. The resultant formulas are con- 
sistent with those obtained by others. 
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